Tuesday, September 27, 2016

Flow Rates in Heating Systems

Calculate flow rates in heating systems


       The volumetric flow rate in a heating system can be expressed as
                                                q = h / (cp ρ dt)         (1)
where
q = volumetric flow rate, h = heat flow rate , cp = specific heat capacity , ρ = density ,
dt = temperature difference 
This generic equation can be modified for the actual units - SI or imperial - and the liquids in use.


                       Volumetric Water Flow Rate in Imperial Units

For water with temperature 60 oF flow rate can be expressed as
q = h (7.48 gal/ft3) / ((1 Btu/lbm.oF) (62.34 lb/ft3) (60 min/h) dt)        
    = h / (500 dt)         (2)
where
q = water flow rate (gal/min), h = heat flow rate (Btu/h), ρ = density (lb/ft3),
dt = temperature difference (oF)
For more exact volumetric flow rates the properties of hot water should be used.


                           Water Mass Flow Rate in Imperial Units

Water mass flow can be expressed as:
                                m = h / ((1.2 Btu/lbm.oF) dt)        
                                    =  h / (1.2 dt)     (3)
where
m = mass flow (lbm/h)


                        Volumetric Water Flow Rate in SI-Units

Volumetric water flow in a heating system can be expressed with SI-units as
                      q = h / ((4.2 kJ/kgoC) (1000 kg/m3) dt)        
                         = h / (4200 dt)        (4)
where
q = water flow rate (m3/s), h = heat flow rate (kW or kJ/s), dt = temperature difference (oC)
For more exact volumetric flow rates the properties of hot water should be used.

 

                             Water Mass Flow Rate in SI-units

Mass flow of water can be expressed as:
                                          m = h / ((4.2 kJ/kg.oC) dt)
                                              = h / (4.2 dt)        (5)
where
m = mass flow rate (kg/s)


                          Example - Flow Rate in a Heating System

A water circulating heating systems delivers 230 kW with a temperature difference of 20oC.
The volumetric flow can be calculated as:
q = (230 kW) / ((4.2 kJ/kg oC) (1000 kg/m3) (20 oC))
    = 2.7 10-3 m3/s
The mass flow can be expressed as:
m = (230 kW) / ((4.2 kJ/kg oC) (20oC))
    = 2.7 kg/s


                            Example - Heating Water with Electricity

10 liters of water is heated from 10oC to 100oC in 30 minutes. The heat flow rate can be calculated as 
h = (4.2 kJ/kg oC) (1000 kg/m3) (10 liter) (1/1000 m3/liter) ((100oC) - (10oC)) / ((30 min) (60 s/min))
  =  2.1 kJ/s (kW)
The 24V DC electric current required for the heating can be calculated as
I = (2.1 kW) (1000 W/kW)/ (24 V)
   = 87.5 Amps

Hot Water Boiler - Water Circulation Rates



           

   Boiler power and water flow through boilers - Imperial and SI-units


    The relation between
  •  Boiler capacity (or power)
  •  Temperature drop of the water flow in a system serviced by boiler
  •  Circulated water flow
               are indicated in the diagrams below:

Water Circulation - Boiler Capacity in BHP - Temperature drop in degrees Fahrenheit



  • 1 gal (US)/min = 6.30888x10-5 m3/s = 0.0227 m3/h = 0.06309 dm3(liter)/s = 2.228x10-3 ft3/s = 0.1337 ft3/min = 0.8327 Imperial gal (UK)/min
  • 1 hp (English horse power) = 745.7 W = 0.746 kW = 550 ft lb/s = 2,545 Btu/h

      Water Circulation - Boiler Capacity in MBtu/h - Temperature drop in degrees Fahrenheit


       
  • 1 Btu/h = 0.293 W

                 Water Circulation - Boiler Capacity in kW - Temperature drop in degrees Celsius


  • 1 kW = 3,412 Btu/h = 1.341 British hp

Example - Water flow through Boiler

A boiler with capacity 50 kW increases the temperature of the circulated water with 20oC - the water flow through the boiler according the diagram above is 0.6 kg/s




Heat Transfer Formula ,some problems and solution

  Heat Transfer Formula

                                Heat transfer is all about the transfer of heat from one point to another. If we consider any system which will be at higher temperature compared to surroundings, there will be transfer of heat from system to the surroundings.

                            Heat transfer is given by
Formula for Heat Transfer
Where,   m is the mass,
             C is the specific heat and
             T is the temperature difference in K.


There are three types of Heat transfer
  1. Conduction
  2. Convection
  3. Radiation.
                         Heat transfer (Q) by Conduction formula is given by
Where, k is the thermal conductivity of the material,
           A is the cross sectional area,
           THot is the higher temperature,
           TCold is the cooler temperature,
           t is the time taken,
           d is the thickness of the material.

                             Heat transfer by Convection is given by
Heat Transfer by Convection Formula                 Where Hc is the heat transfer coefficient,

                        The Heat transfer by radiation is given by
Heat Transfer by Radiation Formula              Here  is the Stefan Boltzmann Constant.

                 Heat transfer is usually expressed in Joules. Heat transfer formula is used in problems to find the heat transfer taking place for any given material.

                  

                               Heat Transfer Problems


Below are some problems on Heat transfer which may be helpful for you.

Solved Examples

Question 1: A room is maintained at 20oC where as temperature outside the room is 10oC. There is one of the window in the corner having area 1m by 2m. Calculate the heat transfer?
Thermal Conductivity of glass is 1.4 W/mK.

Solution:

Thermal Conductivity of glass is 1.4 W/mK.
Initial temperature Tcold = 10oC,
Final temperature THot = 20oC,
Area A = 1m × 2m = 2 m2,

The Heat transfer Q = kA(THotTCold)d
                             = 1.4W/mK×2m2×10oC0.003m
                   
                           = 9333.33 W.


Question 2: Calculate the Heat lost by the block when iron block decreases its temperature from 60oC to 40oC if the mass of the body is 2 Kg.
Specific heat of iron C = 0.45 kJ/kg K.

Solution:

Given: Initial temperature Ti = 60oC,
          Final temperature T= 40oC,
          Mass of the body m = 2 kg,
The Heat lost is given by Q = m c Δ T
                                        = 2 Kg × 0.45 kJ/kg K × 293 K
                                        = 263.7 J.